Solution
The correct answer is (a) strictly increasing in interval $(2,∞)$
(b) strictly decreasing in the interval $(−∞,2)$
Explanation
$f(x)=x^2−4x+6$
Differentiate $f'(x)=2x−4$
$f'(x)=0 ⇒ 0=2x−4 ⇒ x=2$
The point $x=2$ divides the curve into two disjoint intervals namely $(−∞,2)$ and $(2,∞)$
In the interval $(−∞,2)$, $f'(x)=2x−4<0$
Hence, $f$ is strictly decreasing in $(−∞,2)$
In the interval $(2,∞)$, $f'(x)>0$
Hence, in the interval $(2,∞)$, the function f is strictly increasing.